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Optimizing Strategies to
Sample the Tropical Cyclone
Warm Core & Warm Core
Transitions During HS3
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itu Whole-Column Warm Core

Sampling — Vertical Structure

* Hawkins & Imbembo (1976) - Inez, 1966
* Franklin et al. (1988) - Gloria,
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Fi1G. 6. Cross section through Erin’s core showing temperature perturbation. Analysis was made by o , S 1000M8
compositing dropsondes along/nearby the dashed line shown in Fig. 1. The vertical slide is oriented from MONL BOTANGE W MG LS e StoutTeeM, SDNER &0 €YE
southwest to northeast. Maximum perturbation temperature of +11°C and distance scale are shown. FiG. 8. Vertical section through the inner core of Hurricane Inez, showing isolines of
Initial release times of dropsondes are 1629, 1648, 1704, 1750, 1928, and 1936 UTC for B, 1, 2, 4, 8, and perturbation temperature, based on aircraft transects. Figure reproduced from Hawkins and

I, respectively. Imbembo (1976).
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2010, GRIP: HAMSR Retrievals of
Karl’s Warm Core During Rl

* Unprecedented temporal sampling

. Capable of resolving significant vertical structure
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in Variety of TC Environments &
Transitions — HAMSR, dropsondes
Key Science Questions Over TC Lifecycle

Wave to depression transition: Document cold core to warm core evolution; is
development bottom-up or top-down? Are there multiple warm cores that consolidate?

Intensification, RI: Is this dominated by upper level warm core amplification &
expansion? What is relationship of warming to subsidence driven by convective bursts,
latent heating in convection? Quantify the hydrostatic relationship b/t warming and
surface pressure reduction, vortex spin up and vertical structure. Document warm core
asymmetries & relationship to wave number 1, other inner core modes? Possibility of
very rapid thermodynamic changes?

Weakening: Is this preceded by/contemporaneous w/ weakening of warm core aloft?
What is the impact of increasing vertical wind shear on warm core structure?

Extratropical transition: Virtually no in situ data to document this! Asymmetrization of
warm anomaly; does cold core develop from bottom up? How long does warm core
persist aloft? How is remnant thermal core modified as baroclinic zones develop?



Use AV-6, AV-1 to Construct In Situ
Phase Space Diagrams of Warm Core
Evolution Across Storm Trajectory —
Unprecedented Temporal Resolution?

EARL(2010) [0.5° GFS Analysis]
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Continued Comparisons Of In Situ With
AMSU Satellite Retrievals Continue to
Be Very Important

g 54.94 GHz 9/17 00:39 UTC
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How Do We Optimize Warm Core
Sampling Strategies?

Coordination w/ NOAA P3 drops is important

AV-1: HAMSR provides intensive temporal, spatial
warm core sampling, likely 48 hours gap coverage

AV-6: Can help fill in IF we can get a few storm
overflights on each mission - time continuity of warm
core evolution is critical over several days

When AV-6 transits inner core, minimum
requirement is single, well-placed sonde (this may be
difficult) - better to drop a few along transect

Will need to cross-calibrate HAMSR and dropsonde
T, RH profiles for every storm sampled
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Mapping the 4D Warm Core Is a Critical
Component of Conceptualizing an Integrated
Picture of Each Storm’s Behavior & Evolution,

Thermodynamics & Kinematics

The more times we can do this during HS3,
for a variety of intensities & storm transitions,
the better!

|A. Dynamical Aspects of Erits Eye (Observed & Inferred)|
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